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A structural formula in organic chemistry is a stat#ement of the topological con- 
nectivity of the atoms of a compound. However, the topological theory of organic 
chemical structure has not been formally developed. Partly in consequence, the 
taxonomy, i.e., nomenclature, notation, and homology, of the field lags behind its 
substance which impedes communication, whether this be information retrieval or 
professional education. Witness the mystification often provoked by the proper 
name of a new drug. The need for a more complete formal system became acut’ely 
evident in an effort to write computer programs for the logical analysis of mass spec- 
t’ra.ro 2 It was found that the mapping of organic st’ructures on st,andardized forms 
contributed to the simplification of the problem and this will be illustrated here. 

Tree Structures. -Acyclic molecules are easy to standardize, but topological 
principles are hardly used in current practice. Over thirty years ago, Henze and 
Blair3 pointed out, in their enumeration of alkanes, that a unique centroid can be 
found in any chemical tree. This is either a link that evenly divides the skeleton 
of the tree, or a single atom each branch from which carries less than half of the 
skeletal atoms. The unique centroid is then t,he starting point for a canonical 
mapping of the tree, following simple rules of precedence of the constituent radicals 
according to their composition and topological structure. A compact, unique, and 
unambiguous notatdonal system2 has been established from thrse canons and need 
detain us no further here. 

Cyclic Structures.-Rings are much more difficult to process on a node-by-node 
basis. Ambiguities due to symmetry are usual, and many paths can be evaluated 
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FIG. l.-Fundamental trivalent polyhedra, including degenerate forms, with up to 10 
vertices. Examples are drawn from polycyclic compounds where possible; these do show 
an unusual degree of symmetry. 

only by recursively searching through the entire graph. This approach was there- 
fore abandoned in favor of a fundamental classification of the graphs. To achieve 
this, a number of simplifying st’eps are introduced. Thefirst of these is to isolate the 
paths within the ring. The classification then depends on the set of branch points. 
Organic rings rarely have more than three branches at any point; an instance of 
four branches can be accommodated by exception. A second simplification then 
asks only for a classification of regular trivalent graphs. How, then, can the set of 
t,rivalent graphs be systematically arranged, and how can we be assured of having 
drduced the entire set, wit,hout isomorphic redundancies? The graphs of Figure 2 
constitute such a set, of order 8, except for the gauche forms discussed later. Similar 
sets of orders 10 and 12 have also been generated on the computer. 

Polygonal graphs are relatively easy to comput’e, but they fail t’o show many of 
the symmetries of the figures. This is dramatized by the two isomorphic polygonal 
representrations of the bipentagon. Furthermore, not all the graphs have Hamilton 
circuit,s (i.e., can be represented as chorded polygons). Some, like 8 RI, require ad- 
ditional vertices, and these are not so readily generated by a polygon algorithm. 

A third basis was therefore introduced, the trivalent graphs being identified with 
polyhedm, including some degenerate forms and derivations from them. As shown 
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FIG. Z.-Trivalent graphs of order 8. 8A-C are fundamental forms already seen in Fig. 
1. Polygonal representations are computer-generated plots; corresponding polyhedral 
presentations were drawn by hand. 
position. 

Adjacent to each of the unions is a code for its com- 

in Figure 1, the formulation of polyhedra emphasizes the orderly development of the 
set of graphs and the symmetries of each structure, and t’hus facilitates the recogni- 
tion of isomorphisms. 

Polyhedral Forms.--For topological analysis of a ring the linear paths and the 
vertices connecting them are first identified. The vertices are simply the branch 
points, i.e., the atoms with three or more links to the rest of the ensemble. For these 
purposes a double or triple bond is a single link. The paths are then the intervals be- 
tween the vertices. A path may be a simple link or a linear string of tandemly 
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linked atoms. For example, marking 5 , N 
the paths of pyrene, (a), gives the 
diagram (b) which is readily recognized w 
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as isomorphic to the prism (c) and its MORPH,NeiN 
formal graph (d). The isomorphism 
of (6) with (c) could also be established 
algorithmically by systematic permuta- 
tion of the incidence matrix of the 
graphs. 
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Figure 1 lists convex trivalent poly- I8Bl =YP 

hedra with up to 10 vertices, on which FIG. 3.-Mapping a complex ring; morphirran. 
structures with up to six rings can be 
mapped. It also includes some laminar forms, e.g., the circle, bicyclane, and tri- 
cyclane, wrhich might be regarded as degenerate polyhedra wit’h 1, 2, or 3 faces, 
respectively. The series has also been algorithmically expanded further in a com- 
puter program. 

Any trivalent graph is assumed to represent either a polyhedron5 or a gauche graph 
of the same order, or the union of two or more graphs of lower order. A union is 
obtained across a pair of cut edges of two graphs. The derived forms are classified 
according to the largest polyhedron or symmetrical union, e.g., bit’etrahedron, con- 
tained in the graph. 

Xpiro-Atoms. -A quadrivalent vertex is mapped as a collapsed edge of a trivalent 
graph : > . - . < = > . <. The parent graph is almost always subject to two or three 
choices. That partition is chosen which leads to the least complex map, i.e., the 
nearest to a polyhedron with the least appendages. Figure 3 illustrates a mapping 
of morphinan. 

Gauche Graphs.--The Ring Index4 with its 11,524 examples of rings known to or- 
ganic chemistry contains no example of a finite gauche graph, i.e., one whose 
representation on the plane has obligatory crossed pat,hs. (Optional crossed-path 
formulas are somet,imes preferred to show the homology of figures to one another.) 
A theorem of Kuratowski has shown that a gauche graph must contain either Figure 
4a or 4b;6 I’igure 4a may bc discoumed as an unlikely pentaspiro complex. Is the 
nonexistence of Figure 4b a coincidence? Its representation, Figure 4c, as an in- 
ternally chorded tetrahedron may throw some light on t,his. A gauche structure 
would require access of a chemical path to the interior of a urotropinelike molecule, 
Figure 4d. However, with the interposition of longer paths, it should be possible 
to fill this topologicochcmical hiatus. 

Limitations of Topological Description.-Mapping is int’ended to convey only the 
connectivity relationship of a set of 
atoms, which is only the first-order 
account of a molecular structure. In- 
formation on the bond character or 
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stereochemical ordering of links must be 
furnished in addition. At least the (01 CD, ICI (d) 
latter is not difficult: the main pro- FIG. 4.-Gauche graphs: (a) and (b), Kura- 
gramming problems involve account- towski’s fundamental forms of nonplanar graphs; 

ing for all the symmetries. Molecular 
(c), a three-dimensional representation of (b); . and (d) is a hypothetical example. 
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conformations represent another domain, whose computation belongs mainly to 
numerical analysis rather than topology. Thus, from the standpoint of the 
present paper, interlocked rings have the same connectivity as separate rings. 
The catena structures cannot, however, be properly drawn wit’hout crossed paths. 
Many real conformations may also have to be shown with superimposed paths in 
any actual projection on the plane. 

Applications of Topdogical Mapping.-The primary purpose of this analysis was 
to provide a framework for computable logic in organic chemistry, especially the 
analysis of mass spectra. The theoretical ideas of this presentat,ion are very primi- 
tive and its main virtue may be to provoke a more sophisticated mathematical for- 
mulation. 

Once a standard form is chosen for mapping, canons can be elaborated for the 
ordering of paths leading in turn to a systematic, compact, computable notation for 
organic structures.2 The main burden of the standardization is a dissection of the 
symmetries of the diagram, then a rule of choice among the permutations of the 
labels. Thus, in the example of Figure 3, the diagram 8B has fourfold symmetry. 
The symmetry permutations of the principal polygon can be expressed, with the 
corresponding path lists, as: 

[12345678 
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The top heavy path list of (28) (37) (46) makes this the canonical choice. A linear 
code for the mapping of morphinan is then (8H NCCC, $, --,--,CCC,O,CCC,-,C, -, 
--,-), or morecompa ctly, (8H N3,$,,,3,0,3,,1), the map being thus reduced to a 
twelve-dimensional vector. A computer program would unambiguously recognize 
any of the permuted pat’h list,s as equivalent forms, and can perform the tedious ex- 
ercise just concluded. 

More important than the notation, this framework enables a computer program 
to generate hypotheses of organic molecular structure in an algorithmic, exhaustive, 
and, above all, redundancy-free sequence, important if the computer is to amplify 
human logical capacity in this field. 

Summary.-An algorithmic approach to the topological mapping of organic 
molecules is presented. Three structures are initiated at a unique centroid of t’he 
skeletal atoms. Cyclic structures are more difficult However, the set of regular 
graphs of degree 3 can be generat’ed on a basic set of polyhedra. Any organic ring 
molecule can be mapped on one of these graphs. Exceptional quadrivalent 
vertices (Spiro fusions) are expanded to a pair of trivalent vertices. Gauche graphs, 
with obligatory crossed paths, have not yet been realized in organic chemistry, 
probably owing to the difficulty of accessing a chemical path as an interior chord of 
a closed molecule. 
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